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Abstract. We study bounds on the Riesz means of the mixed Steklov–Neumann and Steklov–
Dirichlet eigenvalue problem on a bounded domain Ω in Rn. The Steklov–Neumann eigenvalue
problem is also called the sloshing problem. We obtain two-term asymptotically sharp lower
bounds on the Riesz means of the sloshing problem and also provide an asymptotically sharp
upper bound for the Riesz means of mixed Steklov–Dirichlet problem. The proof of our results
for the sloshing problem uses the average variational principle and monotonicity of sloshing
eigenvalues. In the case of Steklov-Dirichlet eigenvalue problem, the proof is based on a well–
known bound on the Riesz means of the Dirichlet fractional Laplacian, and an inequality between
the Dirichlet and Navier fractional Laplacian. The two-term asymptotic results for the Riesz
means of mixed Steklov eigenvalue problems are discussed in the appendix which in particular
show the asymptotic sharpness of the bounds we obtain.

1. Introduction

Let Ω be a bounded domain in Rn with Lipschitz and piecewise smooth boundary ∂Ω. We
assume that

(1.1) ∂Ω = F ∪ B, where F ⊂ {xn = 0}, and B ⊂ {xn < 0}.
Throughout the paper, we refer to F as a subset of Rn−1 × {0} and as a subset of Rn−1 inter-
changeably. Consider the following eigenvalue problem

(1.2)


∆f = 0, in Ω,
∂f
∂n

= 0, on B,
∂f
∂xn

= νf, on F ,

where n is the unite outward normal vector along ∂Ω, and ∂f
∂n

is the derivative of f in the direction
of n. The above mixed Steklov–Neumann eigenvalue problem is also called the sloshing problem.
It is known that it has a discrete set of eigenvalues (see for example [2, Chapter III])

0 = ν1 ≤ ν2 ≤ ν3 ≤ · · · ↗ ∞
and each eigenvalue has a finite multiplicity. The corresponding eigenfunctions {ϕj}∞j=1 restricted

to the free surface F form a basis for L2(F). The eigenvalues of the sloshing problem can be
considered as the eigenvalues of the Dirichlet–to–Neumann map

DN : L2(F)→ L2(F),

f 7→ ∂f̃

∂n
,

where f̃ is the harmonic extension of f to Ω satisfying the Neumann boundary condition on B.
The sloshing problem naturally appears in the study of the sloshing liquid, where the sloshing
frequency is proportional to

√
νj and its study has a long history. For a short historical note

we refer to [10], and for more recent developments on the subject to [1, 15] and the references
therein.
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The focus of our study is to find sharp semiclassical lower/upper bounds for the Riesz means of
eigenvalues of the mixed Steklov problems (1.2) and (1.5) (see below).
The Riesz mean Rγ(z) of order γ > 0 is defined as

Rγ(z) :=
∑
j

(z − νj)γ+, z > 0,

where (z − ν)+ := max{0, z − ν}. We may also denote it by RΩ
γ (z,DN) to identify the domain

and the operator under consideration.
When γ → 0, it approaches the counting function

N(z) :=
∑
νj<z

1 = sup{k : νk < z}

and by convention we denote R0(z) := N(z). The asymptotics of the counting function N(z) for
the eigenvalue problem (1.2) is given by (see for example [21])

N(z) ∼ ωn−1

(2π)n−1
|F|zn−1, z ↗∞,

where ωn−1 = π
n−1

2

Γ(n+1
2

)
is the volume of a unit ball in Rn−1, and |F| denote the (n− 1)-Euclidean

volume of F . Using the Riesz iteration, i.e. the following identities

(1.3) Rγ+ρ(z) =
Γ(γ + ρ+ 1)

Γ(γ + 1) Γ(ρ)

∫ ∞
0

(z − t)ρ−1
+ Rγ(t)dt

and

Rγ(z) = γ

∫ ∞
0

(z − t)γ−1
+ R0(t)dt = γ

∫ z

0

(z − t)γ−1R0(t)dt,

we can immediately get the asymptotics behaviour of Rγ(z)

(1.4) Rγ(z) ∼ Cn,γ|F|zn+γ−1, z ↗∞,
where

Cn,γ :=
1

(4π)
n−1

2

Γ(γ + 1)Γ(n)

Γ(n+1
2

)Γ(n+ γ)
.

For basic facts on the Riesz means, we refer to [3, 7]. Sharp semiclassical bounds on the Riesz
means of Dirichlet and Neumann eigenvalues of the Laplacian were studied in numerous work,
see for example [12, 6, 8, 16]. Recently, a sharp semiclassical bound for the Riesz means Rγ(z),
γ ≥ 2, of Steklov eigenvalues was obtained in [20]. However, such sharp semiclassical bounds for
Riesz means of the mixed Steklov problem are unknown.
We also consider the mixed Steklov–Dirichlet eigenvalue problem:

(1.5)


∆f = 0, in Ω,

f = 0, on B,
∂f
∂xn

= ηf, on F ,
where instead of the Neumann boundary condition, the Dirichlet boundary condition is imposed
on B. For a physical interpretation of this problem, see for example [15]. The eigenvalues of
the Steklov–Dirichlet problem can be also considered as the the eigenvalues of the Dirichlet–to–
Neumann map

DD : L2(F)→ L2(F)

f 7→ ∂f̃

∂n
,
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where f̃ is the harmonic extension of f to Ω satisfying the Dirichlet boundary condition on B.
We denote the Riesz means of eigenvalues of problem (1.5) by RΩ

γ (z,DD), and when there is no

confusion by RΩ
γ (z) or Rγ(z).

In the following subsections, we state our main results on asymptotically sharp bounds on
RΩ
γ (z,DN) and RΩ

γ (z,DD). As a consequence, we also get asymptotically sharp bounds on the
sum of first k eigenvalues of the mixed Steklov problem.

1.1. Steklov–Neumann eigenvalue problem. Our first result gives a two–term asymptoti-
cally sharp lower bound on Rγ(z,DN) in dimension two.

Theorem 1.1. Let Ω̃ be a bounded domain in R2 with ∂Ω̃ = F ∪ B̃ as in (1.1). We assume
that F is connected and there exists δ > 0 such that B̃ meets F in two line segments in a
δ−neighbourhood of corner points1 P and Q (as shown in Figure 1) with angles α, β ∈ (0, π).
We denote the complement of these two line segments in B̃ by B̃c. Then for every γ ≥ 1 and
every z > 0 there exists a constant c = c(z, γ, δ, α, β, |B̃c|) depending on z, γ, δ, α, β, and |B̃c| such
that for any Ω ⊂ Ω̃ with ∂Ω = F ∪B the Riesz mean RΩ

γ (z,DN) satisfies the following inequality.

(1.6) RΩ
γ (z,DN) ≥ C2,γ|F|zγ+1 +

1

2π

(
1

tan(α)
+

1

tan(β)

)
zγ + c,

where C2,γ = 1
π(γ+1)

. Moreover, c = O(zγ−1) as z →∞. Here our convention is that 1
tan(π/2)

= 0.

Remark 1.2. Note that for a fixed z, when δ tends to 0, constant c in inequality (1.6) may tend
to −∞. However, there exists a contant z0 depending on γ, δ, α, β, and |B̃c| with (α, β) 6= (π

2
, π

2
)

such that for every z ≥ z0 and γ ≥ 1, and for any domain Ω satisfying the assumption of
Theorem 1.1, we have,

RΩ
γ (z,DN) ≥ C2,γ|F|zγ+1 +

1

4π

(
1

tan(α)
+

1

tan(β)

)
zγ.

When Ω̃ is a triangle/trapezoid, then for δ equal to the height of the triangle/trapezoid, we
have B̃c = ∅, and constant c in (1.6) is equal to

c =
1

4πδ

(
1

tan(α)
+

1

tan(β)

)
(1− e−2δz).

The coefficient of zγ in (1.6) is zero when (α, β) = (π
2
, π

2
). When Ω is a subset of the infinite strip

F × (−∞, 0), we say that Ω satisfies the so-called John condition, see [1]. We show that when Ω
satisfies the John condition then we get a uniform lower bound with 1

2
zγ in the second term:

(1.7) RΩ
γ (z,DN) ≥ |F|

π(γ + 1)
zγ+1 +

1

2
zγ.

1The points in the intersection F̄ and B̄ are called the corner points.
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We remark that inequality (1.7) is not a consequence of Theorem 1.1, see Proposition 2.8.

In Theorem 1.1, when B and B̃ are tangent to each other at points P and Q, then the coefficient
of zγ depends only on the interior angles between F and B.
Recently, Levitin, Parnovski, Polterovich and Sher in [15, Theorem 1.2.2] showed that when
α, β ∈ (0, π

2
) are the interior angles between F and B, and k ↗ ∞, the following asymptotic

expansion holds

(1.8) νk|F| = πk − π

2
− π2

8

(
1

α
+

1

β

)
+ o(1).

Their result in particular proves Fox-Kuttler’s conjecture in 1983 [5]. From (1.8), one can deduce
N(z) = 1

π
|F|z +O(1), as z ↗∞ (see also [15, Corollary 1.6.1] for a related result). Ferrulli and

Lagacé show (see the appendix) that the following two-term asymptotic for Rγ(z), γ > 0 is a
consequence of (1.8).

(1.9) Rγ(z,DN) = C2,γ|F|zγ+1 +
π

8

(
1

α
+

1

β

)
zγ + o(zγ),

where α, β ∈ (0, π
2
) are the interior angles between F and B. The above asymptotic holds when

one or both angles take the value π
2

provided that Ω satisfies the local John condition (we refer
to the appendix for the definition). We observe that the coefficient of zγ in the second term of
inequality (1.6) depends on the same quantities appearing in the coefficient of zγ in the two–term
asymptotic expansion (1.8). In particular, for domains satisfying the John condition, the second
term of (1.7) is also asymptotically sharp.

In higher dimensions, we obtain a general formula for a two–term lower bound on Rγ(z,DN),
γ ≥ 1, see Theorem 2.3. Here, we only mention a corollary of Theorem 2.3.

Theorem 1.3. Assume that Ω with ∂Ω = F ∪ B satisfied the John condition, i.e. is a subset of
F × (−∞, 0). Then

(1.10) RΩ
1 (z) ≥ Cn,1|F|zn +

(n− 1)ωn−1

(2π)n−1

|F|
(2hΩ)n

(Γ(n)− Γ(n, 2hΩz)) ,

where hΩ is the depth of Ω.

We recall the definition of the incomplete Γ-function Γ(n, x):

Γ(n, x) := (n− 1)!e−x
n−1∑
k=0

xk

k!
.

In particular, notice

Γ(n)− Γ(n, x) > 0, ∀x > 0, ∀n ∈ N.
One can apply the Riesz iteration in the inequalities above and get a lower bound on RΩ

γ (z,DN).
The leading term in (1.3) is asymptotically sharp. To the best of our knowledge no two-term
asymptotic expansion is known in higher dimensions in order to compare our results with.

The proofs of the results above are based on using the averaged variational principal intro-
duced in [4] and monotonicity results for eigenvalues of (1.2) studied in [1].

We now give an asymptotically sharp bounds for the sum of first kth eigenvalues of the sloshing
problem. Kröger [9] obtained a sharp upper bound for the sum of eigenvalues of the Laplacian
with Neumann boundary condition. His result was recently sharpen by Harrell and Stubbe in [8].
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Adapting the argument in [8] to the sloshing eigenvalue problem, we obtain a counterpart of the
Kröger–Harrell–Stubbe inequality for the sum of eigenvalues of the sloshing problem.

Theorem 1.4. Under the assumption of Theorem 1.3, we have

(1.11)
1

k

k∑
j=1

νj ≤
n− 1

n

(
Wn,k −

1

Wn,k

(νk+1 −Wn,k)
2

)
,

where

Wn,k := 2πω
− 1
n−1

n−1

(
k

|F|

) 1
n−1

.

Inequality (1.11) in particular gives a two-sided asymptotically sharp bound for an individual
eigenvalue

(1.12) Wn,k(1−
√

1− Sk) ≤ νk+1 ≤ Wn,k(1 +
√

1− Sk),
where

Sk :=
n

n− 1

∑k
j=1 νj

kWn,k

.

1.2. Steklov–Dirichlet eigenvalue problem. In this section, we state our result on asymp-
toticly sharp upper bounds on RΩ

γ (z,DD), γ ≥ 1. The same asymptotic (1.4) remains true for
the mixed Steklov–Dirichlet problem (1.5).

(1.13) Rγ(z) ∼ Cn,γ|F|zn+γ−1, z ↗∞.
We obtain an asymptotically sharp upper bound for RΩ

γ (z,DD):

Theorem 1.5. Let Ω be a bounded domain and subset of an infinite cylinder F × [−∞, 0], where
∂Ω = F ∪ B. Here F is the free part of the boundary. Then for every γ ≥ 1 and z > 0 we have

(1.14) RΩ
γ (z,DD) =

∑
j

(z − ηj)γ+ ≤ Cn,γ|F|zn+γ−1.

For the proof of this theorem, we use the relationship between eigenvalues of the fractional
Laplacian with different type of boundary conditions studied in [17, 18, 19] together with the
result of Laptev [12] on upper bounds of the Riesz means for the Dirichlet fractional Laplacian.
As pointed out in [14] and [13, Page 8], an asymptotically sharp upper bound for R1(z) leads
to an asymptotically sharp lower bound for the sum of first kth eigenvalues (and vice versa)
by using the Legendre transform. Thus, we get the following bound on the sum of firth kth
Steklov-Dirichlet eigenvalues by applying the Legendre transform to (1.14),:

Corollary 1.6. Under the assumption of Theorem 1.5, the following inequality holds.

(1.15)
1

k

k∑
j=1

ηj ≥
n− 1

n
Wn,k = 2π

(
n− 1

n

)
ω
− 1
n−1

n−1

(
k

|F|

) 1
n−1

.

As in (1.9), Ferrulli and Lagacé also obtain the following two-term asymptotic for Rγ(z,DN).
We refer to the appendix for more details.

(1.16) Rγ(z,DD) = C2,γ|F|zγ+1 − π

8

(
1

α
+

1

β

)
zγ + o(zγ),

where α, β ∈ (0, π
2
) are the interior angles between F and B. This asymptotic holds when α or β

is equal to π
2

provided that Ω satisfies the local John condition. We show that when Ω satisfies
the John condition, we can get two-term asymptotically sharp upper bound for RΩ

1 (z,DD).
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Theorem 1.7. Let Ω ⊂ R2 satisfies the John condition. Then the Riesz mean of eigenvalues ηj
of problem (1.5) satisfies

(1.17) RΩ
1 (z,DD) =

∑
j

(z − ηj)+ ≤
|F|
2π

z2 − 1

2
z +

π

2|F|
.

One can apply the Riesz iteration to find bounds on Rγ(z,DD).

Open Question 1.8. It is an intriguing question if we can get a two–term upper bound with a
negative second term depending only on α and β. One can ask if there exist a positive constant
C(α, β) such that ∑

j

(z − ηj)γ+ ≤ Cn,γ|F|zn+γ−1 − C(α, β)zn+γ−2.

The paper is organised as follows. In section 2, we prove the main results on bounds on the
Riesz means of eigenvalues of problem (1.2), and on Kröger-Harrell-Stubbe’s type inequality for
eigenvalues of the sloshing problem. We also consider cases in which we can get more explicit
lower bounds. In section 3, we study the upper bounds on the Riesz means of eigenvalues of the
mixed Steklov-Dirichlet problem (1.5).

Acknowledgements. The authors would like to thank M. van den Berg and I. Polterovich for
interesting discussion. The main part of this work was completed when the first named author
was an EPDI postdoctoral fellow in the Mittag-Leffler Institute. She is grateful to this institute
for the support and for providing an excellent working condition. Funding for this research was
partially provided by the grant of the Russian Federation Government to support research under
the supervision of a leading scientist at the Siberian Federal University, 14.Y26.31.0006.

2. Slosing eigenvalue problem

In this section, we prove the results of Section 1.1 of the introduction. We first recall the
variational characterisation of the eigenvalues of the mixed Steklov-Neumann problem. Let
{ϕj}∞j=1 be a sequence of eigenfunctions associate with {νj}∞j=1. The k-th eigenvalue νk of problem
(1.2) can be characterised by

(2.1) νk = inf
06=f∈Hk

R(f),

where Hk =
{
g ∈ H1(Ω) :

∫
F gϕjds = 0, j = 1, . . . , k − 1

}
, and

R(f) :=

∫
Ω
|∇f |2dx∫
F |f |2ds

.

Let H(Ω) denotes the space of harmonic functions on Ω. In (2.1) one can replace Hk by Hk :=
{f ∈ H(Ω) :

∫
F gϕjds = 0, j = 1, . . . , k − 1}. We recall the so-called averaged variational

principle introduced in [4]. Let f ∈ H1(Ω) and z ∈ (νk−1, νk]. We choose {ϕj} so that their
restriction to F forms an orthonormal basis for L2(F). Thus, by (2.1) we have

z ≤ R

(
f −

k−1∑
j=1

〈ϕj, f〉Fϕj

)
=

∫
Ω
|∇f |2 dx−

∑k−1
j=1 νj|〈ϕj, f〉|2F∫

F |f |2 ds−
∑k−1

j=1 |〈ϕj, f〉|2F
,

where 〈f, g〉F :=
∫
F fḡ ds. Therefore,

(2.2)
∑
j

(z − νj)+ |〈ϕj, f〉|2F ≥ z

∫
F
|f |2ds−

∫
Ω

|∇f |2dx.
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If moreover f ∈ H(Ω), then applying the Green formula we get

(2.3)
∑
j

(z − νj)+|〈ϕj, f〉|2F ≥ z

∫
F
|f |2ds− Re

∫
∂Ω

∂f

∂n
f̄ ds.

We summarise the discussion above in the following lemma which is called the averaged varia-
tional principle. This is an special case of a more general statement in [4, Lemma 1.5].

Lemma 2.1 (averaged variational principle). Let fξ ∈ H(Ω) be a family of harmonic functions
where ξ varies over a measure space (M,M, µ), with σ-algebra M. Let M0 be a measurable
subset of M . Then for any z ∈ R+ we have

(2.4)
∑
j

(z − νj)+

∫
M

|〈ϕj, fξ〉|2Fdµ ≥ z

∫
M0

∫
F
|fξ|2ds dµ−

∫
M0

Re

∫
∂Ω

∂fξ
∂n

f̄ξ ds dµ.

Another key lemma we need is the monotonicity results for the mixed Steklov-Neumann eigen-
values:

Lemma 2.2. [1, Proposition 3.2.1] Let Ω and Ω̃ be subdomains of Rn whose boundaries ∂Ω =
F ∪ B and ∂Ω̃ = F̃ ∪ B̃ are as described in (1.1). Let Ω be a proper subset of Ω̃ and F̃ = F .
Then the following inequality holds.

νk(Ω) < νk(Ω̃), ∀k ≥ 2.

In particular,

RΩ
γ (z) =

∑
j

(z − νj(Ω))+ ≥
∑
j

(z − νj(Ω̃))+ = RΩ̃
γ (z).

We can now state a general form of the results mentioned in the introduction.

Theorem 2.3. Let Ω be a bounded domain of Rn and ∂Ω = F ∪ B as described in (1.1). The
Riesz means Rγ(z), γ ≥ 1, of the eigenvalues of the mixed Steklov-Neumann problem (1.2) satisfy
the following inequality.

(2.5) Rγ(z) ≥ Cn,γ|F|zn+γ−1 + An,γ(z),

where

An,γ(z) = −(n− 1)γ(γ − 1)

(4π)
n−1

2 Γ(n+1
2

)

∫ z

0

(z − η)γ−2

∫ η

0

∫
B
〈n(x), en〉e2xnrrn−1 ds(x)drdη.

Here ds(x) is the volume element on B and 〈·, ·〉 is the inner product in Rn.

Note that

(2.6) An,1(z) := −(n− 1)ωn−1

(2π)n−1

∫ z

0

∫
B
〈n(x), en〉e2xnrrn−1 ds(x)dr.

It is clear that when 〈n(x), en〉 ≤ 0 for all x ∈ B, then An,γ(z) is positive. Bellow, we discuss
situations in which we have more explicit estimates on An,1. Estimates on An,γ following by using
the Riesz itteration.

Corollary 2.4. Assume that there exists δ > 0 such that

δ ≤ min{|xn| : x = (x′, xn) ∈ B, 〈n(x), en〉 > 0}.
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Then

(2.7) An,1(z) ≥ (n− 1)ωn−1

(2π)n−1

((∫
B−
|〈n(x), en〉|ds

)
1

(2hΩ)n
(Γ(n)− Γ(n, 2hΩz))

−
(∫
B+

〈n(x), en〉ds
)

1

(2δ)n
(Γ(n)− Γ(n, 2δz))

)
,

where B+ := {x ∈ B : 〈n(x), en〉 > 0}, and B− := {x ∈ B : 〈n(x), en〉 ≤ 0}. In particular, when
B+ = ∅, we have

(2.8) An,1(z) ≥ (n− 1)ωn−1

(2π)n−1

((∫
B−
〈n(x), en〉ds

)
1

(2hΩ)n
(Γ(n)− Γ(n, 2hΩz))

)
.

Proof. By Theorem 2.3 we have

An,1(z) =
(n− 1)ωn−1

(2π)n−1

(∫ z

0

∫
B−
|〈n(x), en〉|e2xnrrn−1 ds(x)dr

−
∫ z

0

∫
B+

〈n(x), en〉e2xnrrn−1 ds(x)dr

)
.

Since xn < 0, the function e2xnr is decreasing. Therefore,∫ z

0

∫
B−
|〈n(x), en〉|e2xnrrn−1 ds(x)dr ≥

(∫
B−
|〈n(x), en〉|ds(x)

)(∫ z

0

e−2hΩrrn−1 dr

)
=

(∫
B−
|〈n(x), en〉|ds(x)

)
1

(2hΩ)n
(Γ(n)− Γ(n, 2hΩz)) .

Similarly∫ z

0

∫
B+

〈n(x), en〉e2xnrrn−1 ds(x)dr ≤
(∫
B+

〈n(x), en〉ds(x)

)(∫ z

0

e−2δrrn−1 dr

)
=

(∫
B+

〈n(x), en〉ds(x)

)
1

(2δ)n
(Γ(n)− Γ(n, 2δz)) .

This completes the proof. �

Theorem 1.3 is an immediate consequence of Theorem 2.3 and Corollary 2.4.

Proof of Theorem 1.3. Let Ω̃ := F × (−hΩ, 0). According to Lemma 2.2

RΩ
1 (z) ≥ RΩ̃

1 (z).

Thus, it is enough to find a lower bound for R̃1(z). Using Corollary 2.4 we conclude

RΩ̃
1 (z) ≥ Cn,1|F|zn +

(n− 1)ωn−1

(2π)n−1

(
|F|

(2hΩ)n
(Γ(n)− Γ(n, 2hΩz))

)
.

�

Remark 2.5. For a cylindrical domain F × (−h, 0), the sloshing eigenvalues can be calculated
explicitly using separation of variable (see [1]). They are of the form

√
µk tanh(

√
µkhΩ),

where µk is the k-th Neumann eigenvalues of the Laplacian on F . One can try to get an estimate
for the Riesz means using this explicit expression of the eigenvalues. We shall see below that it
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does not give an asymptotically sharp bound.
For Ω we have

R1(z) =
∑
k

(z −√µk tanh(
√
µkh))+

≥
∑
k

(z −√µk)+

≥ 1

2z

∑
k

(z2 − µk)+

=
1

2z
RF1 (z2,∆N),

where RF1 (z2,∆N) is the Riesz mean of the Neumann Laplace eigenvalues on F . We can use
Harrell–Stubbe’s result [8] on lower bounds for RF1 (z2,∆N) to get

RF1 (z2,∆N) =
∑
k

(z2 − µk)+ ≥ Lcl1,n−1|F|zn+1 +
1

4
Lcl1,n−2

|F|
δv(F)

zn

− 1

96
(2π)2−nωn

|F|
δv(F)2

zn−1,

where δv(F) is the width of F in the direction of v ∈ Rn−1 and

(2.9) Lcl1,n−1 :=
1

(4π)
n−1

2 Γ(1 + n+1
2

)
.

Comparing Lcl1,n−1 with Cn,1 we have

(2.10) Lcl1,n−1 =
2n

n+ 1
Cn,1.

Therefore

R1(z) ≥ n

n+ 1
Cn,1|F|zn +

1

8
Lcl1,n−2

|F|
δv(F)

zn−1

− 1

192
(2π)2−nωn

|F|
δv(F)2

zn−2.

By Lemma 2.1, this bound holds for any proper subset Ω of F × (−h, 0) with ∂Ω = F ∪ B.
It gives a two–term lower bound only depending on the geometry of F . When n → ∞, the
coefficient of the leading term tends to the optimal constant Cn,1.

We now prove the main theorem.

Proof of Theorem 2.3. The proof follows from Lemma 2.1 choosing a suitable family of test
functions. Consider the family of harmonic functions

fξ′(x) = eix
′ξ′+xn|ξ′|

where x = (x′, xn) ∈ Rn−1 × R and ξ′ ∈ Rn−1. Replacing in (2.4) with M = Rn−1 and M0 =
{|ξ′| ≤ z} we get
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∑
j

(z − νj)+

∫
Rn−1

|ϕ̂j(ξ′)|2 dξ′ ≥|F|
∫
|ξ′|≤z

(z − |ξ′|) dξ′

−
∫
|ξ′|≤z

∫
B
〈n, (0, |ξ′|)〉e2xn|ξ′| dsdξ′,

where ϕ̂j(ξ
′) =

∫
F e

ix′ξ′ϕj(x
′)ds is the Fourier transform of ϕj|F . Therefore,

R1(z) =
∑
j

(z − νj)+ ≥
ωn−1

n(2π)n−1
|F|zn − (n− 1)ωn−1

(2π)n−1

∫ z

0

∫
B
〈n, en〉e2xnrrn−1 dsdr,

where ωn−1 is the volume of a unit ball in Rn−1. Proceeding with the Riesz iteration, we obtain
inequality (2.5). This completes the proof. �

We end this subsection with an example.

Example 2.6. Let consider the cone

C := {(x, y, z) : tan2(α)(x2 + y2) = (z + h)2, z ∈ (−h, 0)} ⊂ R3,

where α is the interior angle between B and the free surface F = C ∩R2×{0}. Computing (2.6)
we obtain

A3,1(z) = cos(α)

∫ z

0

∫ h
| tan(α)|

0

1

| cos(α)|
e−2| tan(α)|trtr2 dtdr

=
1

4| tan(α)| tan(α)

∫ z

0

(
1− e−2hr − 2hre−2hr

)
dr

=
1

4| tan(α)| tan(α)

(
z − 1

2h
(1− e−2hz + ze−2hz) +

1

4h2
(1− e−2hz)

)
.

Hence,

RC3,1(z) ≥ 1

12π
|F|z3 +

1

4| tan(α)| tan(α)
z + c,

where c = A3,1(z)− 1
4| tan(α)| tan(α)

z.

One can ask if we can improve the power of z in the second term.

2.1. Riesz means of sloshing problem on domains in R2. In this section, we prove Theo-
rem 1.1. Let us begin with the example which will be used in the proof of Theorem 1.1.

Example 2.7 (Triangular domain). Let Ω ⊂ R2 be a triangle with interior angles α, β ∈ (0, π) as
shown in Figure 2 (note that all the following calculations remain the same if one considers a
trapezoid). Segment OQ is the free part F of the boundary with length L, and B = OP ∪ PQ.
Replacing in (2.6) we have

A2,1(z) = − 1

π

∫ z

0

∫
OP∪PQ

〈n, (0, 1)〉re2yr dsdr.
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α β

P

O Q x

y

Figure 2.

First we calculate the above integral for α, β ∈ (0, π) \ {π
2
}

−
∫ z

0

∫
OP

〈n, (0, r)〉re2yr dsdr =

∫ z

0

r cos(α)

(∫ h
| tan(α)|

0

e−2x| tan(α)|r 1

| cos(α)|
dx

)
dr

=

∫ z

0

1

2 tan(α)

(
1− e−2hr

)
dr

=
1

2 tan(α)

(
z − 1

2h
(1− e−2hz)

)
.

Similarly, we get

−
∫ z

0

∫
PQ

〈n, (0, r)〉e2yr dsdr =
1

2 tan(β)

(
z − 1

2h
(1− e−2hz)

)
.

If α or β is equal to π
2

then 〈n, (0, 1)〉 = 0 on OP or PQ respectively. We make a convention

that 1
tan(π

2
)

= 0. Therefore, we get an explicit formula for A2,1(z) in terms of interior angles

α, β ∈ (0, π):

A2,1(z) =
1

2π

(
1

tan(α)
+

1

tan(β)

)(
z − 1

2h
(1− e−2hz)

)
.

We conclude

(2.11) R1(z) ≥ 1

2π
|F|z2 +

1

2π

(
1

tan(α)
+

1

tan(β)

)(
z − 1

2h
(1− e−2hz)

)
.

Proof of Theorem 1.1. By Lemma 2.2, we know

RΩ
2,γ(z) ≥ RΩ̃

2,γ(z).

Having Theorem 2.3, it is enough to estimate AΩ̃
2,1(z). Consider Figure 1. By assumption PP1

and QQ1 are line segments and B̃c = B̃ \ (PP1 ∪QQ1).

AΩ̃
2,1(z) = − 1

π

∫ z

0

∫
PP1∪QQ1∪B̃c

〈n, (0, r)〉e2yr dsdr.

Following the same calculation as in Example 2.7 we obtain

− 1

π

∫ z

0

∫
PP1∪QQ1

〈n, (0, r)〉e2yr dsdr =
1

2π

(
1

tan(α)
+

1

tan(β)

)(
z − 1

2δ
(1− e−2δz)

)
.

In order to compute the remaining term, let

B̃+
c := {(x, y) ∈ B̃ : 〈n, (0, 1)〉 = cos(θ(x, y)) ≥ 0}
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and
B̃−c := {(x, y) ∈ B̃ : 〈n, (0, 1)〉 = cos(θ(x, y)) < 0},

where θ(x, y) is the angle between n and the (0, 1). Hence

− 1

π

∫ z

0

∫
B̃+
c ∪B̃−c

〈n, (0, 1)〉re2yr dsdr ≥ − 1

π

∫ z

0

∫
B̃+
c

r cos(θ(x, y))e−2δr dsdr

+
1

π

∫ z

0

∫
B−c
r| cos(θ(x, y))|e−2hr dsdr

= − 1

2πδ

(
1

2δ
− 1

2δ
e−2δz − ze−2δz

)∫
B̃+
c

cos(θ(x, y))ds

1

2πh

(
1

2h
− 1

2h
e−2hz − ze−2hz

)∫
B−c
| cos(θ(x, y))|ds

≥ − 1

2πδ

(
1

2δ
− 1

2δ
e−2δz − ze−2δz

)
|B̃c|.

Hence

RΩ
2,1(z) ≥ 1

2π
|F|z2 +

1

2π

(
1

tan(α)
+

1

tan(β)

)
z + c,

where

c =
1

4πδ

(
1

tan(α)
+

1

tan(β)

)
(1− e−2δz)− 1

2πδ

(
1

2δ
− 1

2δ
e−2δz − ze−2δz

)
|B̃c|.

Applying the Riesz iteration on both sides of the inequality completes the proof. �

It is clear from the proof of Theorem 1.1 that it is not necessary to assume that F is connected
in the statement.
If in Theorem 1.1 α = β = π

2
, then A2,γ(z) = O(zγ−1). Hence, the power of z in the second

term of lower bound (1.6) is not optimal. However, for a rectangular domain we can do a more
explicit computation of its Reisz means and get a two-term asymptotically sharp lower bound.
It immediately leads to the same bound on domains satisfying the John condition.

Proposition 2.8. Let Ω be a bounded domain in R2 as in (1.1) with free part F = (0, `)× {0}.
Assume that Ω satisfies the John condition then

RΩ
γ (z) ≥ `

π(γ + 1)
zγ+1 +

1

2
zγ.

Proof. By Lemma 2.2, it is enough to prove the inequality for R = (0, `)× (−hΩ, 0) where hΩ is

the depth of Ω. With the notation of Remark 2.5, we have µk = k2π2

`2
, k ∈ Z+, and

νk(R) =
kπ

`
tanh

(
kπ

`
hΩ

)
.

Hence, we have

RR1 (z) =
∑
k

(z − νk)+ =
∑
k

(
z − kπ

`
tanh

(
kπ

`
hΩ

))
+

≥
∑
k

(
z − kπ

`

)
+

.

We now use the following simple Lemma.

Lemma 2.9. For any R ≥ 0 and k ∈ Z+ we have

1

2

(
R2 +R

)
≤
∑
k≥0

(R− k)+ ≤
1

2

(
R2 +R + 1

)
.
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Proof. The statement follows by a simple calculation.∑
k≥0

(R− k)+ = R +R[R]− [R]2

2
− [R]

2

=
1

2

(
R2 +R

)
+

1

2
(R− [R])(1−R + [R])).

We conclude by

0 ≤ 1

2
(R− [R])(1−R + [R])) ≤ 1

2
.

�

Using the above lemma, we get

R1(z) =
π

`

∑
k≥0

(
`

π
z − k)+ ≥

`

2π
z2 +

1

2
z.

This completes the proof. �

2.2. Bound on sum of eigenvalues. We state and prove a more general version of Theorem 1.4.

Theorem 2.10. For n ≥ 2 the eigenvalues of problem (1.2) satisfies

1

k

k∑
j=1

νj ≤
n− 1

n

(
Wn,k −

1

Wn,k

(νk+1 −Wn,k)
2

)
+W

−(n−1)
n,k cB(νk+1),

where

cB(R) := (n− 1)ωn−1|F|−1

∫ R

0

∫
B
〈n, (0, 1)〉rn−1e2xnrds dr

and Wn,k = 2πω
− 1
n−1

n−1

(
k
|F|

) 1
n−1

.

Proof. The proof follows the same lines of argument as in [8]. For the sake of completeness we
present the whole argument.
By taking z = νk+1, M = Rn−1 and M0 = BR in Lemma 2.1, where BR is the ball of radius R
centered at origin, we obtain

(2.12) νk+1R
n−1 − n− 1

n
Rn ≤ W n−1

n,k

(
νk+1 −

1

k

k∑
j=1

νj

)
+ cB(R).

Remark 2.11. One can immediately get a counterpart of Kröger’s inequality for the eigenvalues
of the sloshing problem by setting Rn−1 = cn(k + 1) in inequality (2.12):

k+1∑
j=1

νj ≤
n− 1

n
c
− 1
n−1

n (k + 1)
n
n−1 + (2π)1−n

∫
BR

∫
B
〈n, (0, 1)〉|ξ′|e2xn|ξ′|dsdξ′.

To simplify (2.12), take R = Wn,kx. Then

1

k

k∑
j=1

νj −
n− 1

n
Wn,k ≤

n− 1

n
Wn,k

(
xn − n

n− 1

νk+1

Wn,k

xn−1 +
n

n− 1

νk+1

Wn,k

− 1

)
+W

−(n−1)
n,k cB(Wn,kx).
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If now we take x = νk+1

Wn,k
, then

1

k

k∑
j=1

νj −
n− 1

n
Wn,k ≤

1

n
Wn,k (nx− (n− 1)− xn) +W

−(n−1)
n,k cB(Wn,kx).

Using the refinement of the Young inequalities stated in [8, Appendix A], for any n ≥ 2 and
every x > 0, the following inequality holds

nx− (n− 1)− xn ≤ −(n− 1)(x− 1)2.

Thus we conclude

1

k

k∑
j=1

νj −
n− 1

n
Wn,k ≤ −n− 1

n

1

Wn,k

(νk+1 −Wn,k)
2 +W

−(n−1)
n,k cB(νk+1).

�

Proof of Theorem 1.4. Under the assumption of Theorem 1.4 we have

B− := {x ∈ B : 〈n, (0, r)〉 ≤ 0} = B.
Hence, cB(x) ≤ 0 for any x > 0, and the statement follows from Theorem 2.10.

�

3. Mixed Steklov-Dirichlet eigenvalue problem

In this section we prove the results stated in Section 1.2. We begin by recalling the mono-
tonicity property of the eigenvalues of Steklov–Dirichlet eigenvalue problem (1.5).

Lemma 3.1. [1, Proposition 3.1.1] Let Ω and Ω̃ be bounded domains of Rn whose boundaries
∂Ω = F ∪B and ∂Ω̃ = F̃ ∪B̃ are as described in (1.1). Let Ω be a proper subset of Ω̃ and F̃ = F .
Then the following inequality holds

ηk(Ω) > ηk(Ω̃), ∀k ≥ 1.

In particular,

RΩ
γ (z,DD) =

∑
j

(z − ηj(Ω))+ ≤
∑
j

(z − ηj(Ω̃))+ = RΩ̃
γ (z,DD).

Proof of Theorem 1.5. Since Ω is subset of the cylinder F × [−hΩ, 0] =: R, where hΩ is the
depth of Ω, by Lemma 3.1 we have

RΩ
γ (z) ≤ RRγ (z).

For R the eigenvalues and eigenfunctions of problem (1.5) can be explicitly calculated (see [1]).
They are of the form √

λk coth(
√
λkhΩ),

where λk is the k-th Dirichlet eigenvalues of the Laplacian on F . Hence, we have

RR1 (z) =
∑
j

(z − ηj)+ =
∑
j

(z −
√
λj coth(

√
λjhΩ))+

≤
∑
j

(z −
√
λj)+.

The sequence
√
λj of square root of eigenvalues of the Dirichlet Laplacian −∆D on F is equal to

the eigenvalues of the Navier fractional Laplacian (−∆)
1/2
N on F . We denote its j-th eigenvalue

by λj((−∆)
1/2
N ). Musina and Nasarov in [17, 18, 19] studied the fractional Laplacian with Navier
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and Dirichlet type boundary conditions. Let us recall that for an arbitrary s > 0 the fractional
Laplacian with Navier boundary conditions is defined by

(−∆s
Nvf, f) =

∑
j

λsj|(f, ψj)|2,

where ψj are eigenfunctions of the Dirichlet Laplacian (−∆)D. The Dirichlet fractional Laplacian
is defined by the closure from the class of functions f ∈ C∞0 (F) of the quadratic form

((−∆)sDf, f) =
1

2π

∫
|ξ|2s|f̂(ξ)|2 dξ,

where f̂ is the Fourier transform of f . It was proved in [17, Corollary 4] that for any 0 < s <
1, the j-th eigenvalue λj((−∆)sD) of the Dirichlet fractional Laplacian is strictly smaller than
λj((−∆)sNv) which implies

λj((−∆)
1/2
Nv ) > λj((−∆)

1/2
D ).

Therefore ∑
j

(z −
√
λj)+ =

∑
j

(
z − λj((−∆)

1/2
Nv )
)

+
<
∑
j

(
z − λj((−∆)

1/2
D )
)

+
.

We now use the bound on the Riesz means of the Dirichlet fractional Laplacian (−∆)
1/2
D proved

by Laptev in [12, Corollary 2.3].∑
j

(
z − λj((−∆)

1/2
D )
)

+
≤ (2π)−(n−1)|F|zn

(∫
Rn−1

(1− |ξ|)+dξ

)
= Cn,1|F|zn.

This completes the proof. �

Remark 3.2. Applying the Laplace transform on inequality (1.14), we can get an immediate
upper bound for the trace of the heat kernel of operator DD. More precisely

∞∑
j=0

e−ηjt ≤ Γ(n)

(4π)
n−1

2 Γ(n+1
2

)

|F|
tn−1

.

Proof of Theorem 1.7. We first show that inequality (1.17) holds for a rectangular domain
R = (0, `)×(−h, 0). With the same notations as in the proof of Theorem 1.5, we have λj((0, `)) =
j2π2

`2
, j ∈ Z+ and

ηj(R) =
jπ

`
coth

(
jπ

`
h

)
.

Thus

RR1 (z) =
∑
j

(z − ηj)+ =
∑
j>0

(
z − jπ

`
coth

(
jπ

`
h

))
+

≤
∑
j

(
z − jπ

`

)
+

.

By Lemma 2.9 we have

π

`

∑
j>0

(
`

π
z − j

)
+

≤ π

2`

(
`2

π2
z2 − `

π
z + 1

)
=

`

2π
z2 − 1

2
z +

π

2`
.

By monotonicity property in Lemma 3.1 the statement of the theorem follows. �
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Remark 3.3. Let Ω ⊂ R2
− be a domain with ∂Ω = F ∪ B, F = (0, `), containing a rectangular

domain R = (0, `)× (−h, 0). We can get a two–term asymptotically sharp lower bound on RΩ
1 (z)

with an optimal leading term. Indeed, using the monotonicity result together with Lemma 2.9
and the following inequality

x coth(x) ≤ 1 + x

for z ≥ 1 we obtain

RΩ
1 (z) ≥ RR1 (z) =

∑
j>0

(
z − jπ

`
coth

(
jπ

`
h

))
+

≥
∑
j>0

(
z − 1− jπ

`

)
+

≥ `

2π
(z − 1)2 − 1

2
(z − 1)

=
`

2π
z2 −

(
1

2
+
`

π

)
z +

1

2
.

4. Appendix: Two-term asymptotics for Rγ(z)

by Francesco Ferrulli and Jean Lagacé

In this appendix we obtain in dimension 2, under conditions slightly different than those of
Theorem 1.1 two-term asymptotics (1.9) and (1.16) rather than lower and upper bounds for
respectively the sloshing and the Steklov-Dirichlet problem. The conditions are those required
for Theorems 1.2.2 and 1.3.2, and Propositions 1.2.6 and 1.3.5 of [15].

Let us start by introducing local John’s condition.

Definition 4.1. A corner point V between F and B is said to satisfy local John’s condition if
there exists a neighbourhood OV of V such that OV ∩ B ⊂ F × (−∞, 0).

We now prove the following theorem.

Theorem 4.2. Let Ω be a simply connected bounded Lipschitz planar domain with the sloshing
surface F of length L and walls B which are C1-regular near the corner points A and B. Let α
and β be the interior angles between B and F at the points A and B resp., and assume either
that

• 0 < β ≤ α < π/2; or
• 0 < β < α = π/2 and A satisfies local John’s condition; or
• β = α = π/2 and both A and B satisfy local John’s condition.

Then, the following two-term asymptotics for the Riesz mean of order γ > 0 holds as z →∞ :

(4.1) RΩ
γ (z,DN) = C2,γLz

γ+1 +
π

8

(
1

α
+

1

β

)
zγ + o (zγ) ,

and

(4.2) RΩ
γ (z,DD) = C2,γz

γ+1 − π

8

(
1

α
+

1

β

)
zγ + o (zγ) ,

where C2,γ = ((1 + γ)π)−1.
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Proof. In order to be able to prove this statement in one proof for both problems at the same
time, we will make the following notational convention : we write ν+

k := ηk for the eigenvalues
of the Steklov-Dirichlet problem and ν−k := νk for those of the sloshing problem. Similarly, we
write D+ := DD and D− := DN . The conditions we are assuming are exactly those of [15] that
yield the following asymptotics for ν±k :

(4.3)
ν±k =

π

L

(
k − 1

2

)
± π2

8L

(
1

α
+

1

β

)
+ r(k)

=
π

L
k + C± + r(k).

Moreover, r(k) = o (1). This allows us to write

(4.4) RΩ
γ (z;D±) =

∑
0≤ν±k ≤z

(
z − π

L
k − C± − r(k)

)γ
.

Observe that ν±k ≤ z if and only if

(4.5) k + r(k) ≤ L

π
(z − C±) .

Since r(k) = o (1), there exists a function s(z) = o (1) such that ν±k ≤ z if and only if k ≤ g(z),
for g(z) := L

π
(z − C±) + s(z). Since we start counting eigenvalues at k = 1, this allows us to

rewrite equation (4.4) as

(4.6) RΩ
γ (z;D±) =

∑
1≤k≤g(z)

(π
L

)γ
(g(z)− k − s(z)− r̃(k))γ ,

where r̃ = Lπ−1r. From now on we make use of the strategy of the proof by Lagacé and Parnovski
for [11, Theorem 1.6]. Let us write g(z) = az+τz where az is the integer part and τz the fractional
part, and rewrite the previous sum as

(4.7) RΩ
γ (z;D±) =

(π
L

)γ ∑
0≤k≤az−1

(k + τz − s(z)− r̃(k))γ.

Since r̃(k) = o (1), there exists some K such that for all k > K, r̃(k) < 1/4. We split the sum
into

(4.8)
∑

0≤k≤az−1

(k + τz − s(z)− r̃(k))γ =

( ∑
0≤k≤K

+
∑

K<k≤az−1

)
(k + τz − s(z)− r̃(k))γ.

We have that

(4.9)

∑
0≤k≤K

(k + τz − s(z)− r̃(k))γ ≤ K

(
K + 1 + o (z) + inf

k≤K
r(k)

)γ
= o (zγ) .
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For the second sum, suppose that we have chosen z large enough that s(z) < K/4. Then, we
have that

(4.10)

∑
K<k≤az−1

(k + τz − s(z)− r̃(k))γ =
∑

K<k≤az−1

(k + τz)
γ

(
1− s(z)− r̃(k)

k + τz

)γ
=

∑
K<k≤az−1

(
(k + τz)

γ − s(z)O
(
kγ−1

)
+ o

(
kγ−1

))
,

= o (zγ) +
∑

K<k≤az−1

(k + τz)
γ

Finally, the Euler-Maclaurin formula tells us that

(4.11)

∑
K<k≤az−1

(k + τz)
γ =

∫ az−1

K+1

(k + τz)
γ dk +

1

2
((K + 1 + τz)

γ + (g(z)− 1)γ) +O
(
zγ−1

)
=

∫ g(z)−1

K+1+τz

kγ dk +
1

2
((K + 1 + τz)

γ + (g(z)− 1)γ) +O
(
zγ−1

)
=

1

γ + 1
(g(z)− 1)γ+1 + (g(z)− 1)γ +O(1) +O

(
zγ−1

)
We reexpand g(z) and C± and collect all terms together to obtain directly that

(4.12) RΩ
γ (z;DN) = C2,γLz

γ+1 +
π

8

(
1

α
+

1

β

)
zγ + o (zγ) ,

and

(4.13) RΩ
γ (z;DD) = C2,γLz

γ+1 − π

8

(
1

α
+

1

β

)
zγ + o (zγ)

finishing the proof. �

References
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